Preliminary Note

Ionization in the SO₃-BrF₃ system

A. A. WOOLF

School of Chemistry and Chemical Engineering, Bath University, Bath BA2 7AY (Gt. Britain). (Received April 26th, 1971)

The recent communication of Gross and Meinert¹ in which they identified BrF_{2}^{+} and $SO_{3}F^{-}$ ions in BrF_{3} -SO₃ by shifts in the ¹⁹F magnetic resonance prompts us to record further chemical evidence we have obtained on ionization in this system and to point out that the redox range differs from that in BrF_{3} .

The original preparation of silver fluorosulphate was an indirect one. Silver and nitrosyl pyrosulphate were mixed in BrF₃ rather than silver and sulphur trioxide². The latter route was not described because the product was always off-white. A re-examination of the reaction of silver with a BrF₃-SO₃ mixture shows that the product is mainly argentic fluorosulphate which can be thermally decomposed to white argentous fluorosulphate. A similar argentic state was also encountered in the anodic oxidation of silver fluoride in fluorosulphuric acid³ when the black anodic deposit corresponded to a 70:30 mixture of A ρ (II) and A ρ (I). The brown solid reported from the reaction of XeF₂(SO₃F)₂ and silver chloride⁴ is probably similar. Thus in BrF₃-SO₃ the fluorosulphate ion, generated *in situ*, can stabilize A ρ (II); whereas in BrF₃ the trifluoride is oxidised and only the A ρ (I) salts can be obtained from solution. Other oxidations which proceed differently in BrF₃-SO₃ mixtures than in BrF₃-Br₂ or BrF₃ can be turned to practical account.

The ionization of sulphur trioxide in BrF₃ is also shown by calorimetric measurements. The heat of solution is close to that of SbF₅ in BrF₃ (92.80 \pm 0.75 and 92.38 \pm 0.33 kJ mol⁻¹ of solute respectively) and greater than that of weaker "acids" such as TaF₅ and SnF₄⁵. The heat of formation of potassium fluorosulphate (-1166.5 \pm 6.3 kJ mol⁻¹) derived from the heat of "neutralization" of BrF₃-SO₃ mixture with a deficiency of potassium fluorosulphuric acid⁶ (-1161.5 kJ mol⁻¹). These results are compatible with a primary ionization of SO₃-BrF₃ mixtures to BrF₂⁺ and SO₃F⁻ ions as originally suggested.

A small practical point should be mentioned in connection with BrF_3 -SO₃ mixtures to avoid future misunderstanding. Solids are sometimes formed on evaporating these mixtures as well as the more usual liquids. This is caused by polymerisation of sulphur trioxide to its asbestos form, and is more likely to occur when excess trioxide is added to the trifluoride because of traces of moisture.

With excess trifluoride we have been able to store a liquid solution at room temperature over two years without solid deposition. On heating these solutions bromine, possibly bromine fluorosulphates, and polysulphuryl fluorides are formed.

REFERENCES

- 1 A. GROSS AND H. MEINERT, Z. Chem., 11 (1970) 441.
- 2 A. A. WOOLF, J. Chem. Soc., (1950) 1053.
- 3 A. A. WOOLF, J. Chem. Soc., (1955) 442.
- 4 M. EISENBERG AND D. D. DESMARTEAU, J. Amer. Chem. Soc., 92 (1970) 4759.
- 5 G. W. RICHARDS AND A. A. WOOLF, submitted to J. Fluorine Chem.
- 6 G. W. RICHARDS AND A. A. WOOLF, J. Chem. Soc., (1968A) 470.